Dimensional Analysis Using Toric Ideals: Primitive Invariants
نویسندگان
چکیده
Classical dimensional analysis in its original form starts by expressing the units for derived quantities, such as force, in terms of power products of basic units [Formula: see text] etc. This suggests the use of toric ideal theory from algebraic geometry. Within this the Graver basis provides a unique primitive basis in a well-defined sense, which typically has more terms than the standard Buckingham approach. Some textbook examples are revisited and the full set of primitive invariants found. First, a worked example based on convection is introduced to recall the Buckingham method, but using computer algebra to obtain an integer [Formula: see text] matrix from the initial integer [Formula: see text] matrix holding the exponents for the derived quantities. The [Formula: see text] matrix defines the dimensionless variables. But, rather than this integer linear algebra approach it is shown how, by staying with the power product representation, the full set of invariants (dimensionless groups) is obtained directly from the toric ideal defined by [Formula: see text]. One candidate for the set of invariants is a simple basis of the toric ideal. This, although larger than the rank of [Formula: see text], is typically not unique. However, the alternative Graver basis is unique and defines a maximal set of invariants, which are primitive in a simple sense. In addition to the running example four examples are taken from: a windmill, convection, electrodynamics and the hydrogen atom. The method reveals some named invariants. A selection of computer algebra packages is used to show the considerable ease with which both a simple basis and a Graver basis can be found.
منابع مشابه
Toric Ideals of Phylogenetic Invariants
Statistical models of evolution are algebraic varieties in the space of joint probability distributions on the leaf colorations of a phylogenetic tree. The phylogenetic invariants of a model are the polynomials which vanish on the variety. Several widely used models for biological sequences have transition matrices that can be diagonalized by means of the Fourier transform of an abelian group. ...
متن کاملRing graphs and complete intersection toric ideals
We study the family of graphs whose number of primitive cycles equals its cycle rank. It is shown that this family is precisely the family of ring graphs. Then we study the complete intersection property of toric ideals of bipartite graphs and oriented graphs. An interesting application is that complete intersection toric ideals of bipartite graphs correspond to ring graphs and that these ideal...
متن کاملWhen Does the Subadditivity Theorem for Multiplier Ideals Hold?
Demailly, Ein and Lazarsfeld [DEL] proved the subadditivity theorem for multiplier ideals, which states the multiplier ideal of the product of ideals is contained in the product of the individual multiplier ideals, on non-singular varieties. We prove that, in two-dimensional case, the subadditivity theorem holds on log-terminal singularities. However, in higher dimensional case, we have several...
متن کاملToric Ideals of Phylogenetic Invariants for the General Group-Based Model on Claw Trees K 1, n
We address the problem of studying the toric ideals of phylogenetic invariants for a general group-based model on an arbitrary claw tree. We focus on the group Z2 and choose a natural recursive approach that extends to other groups. The study of the lattice associated with each phylogenetic ideal produces a list of circuits that generate the corresponding lattice basis ideal. In addition, we de...
متن کاملDerived categories of small toric Calabi-Yau 3-folds and curve counting invariants
We first construct a derived equivalence between a small crepant resolution of an affine toric Calabi-Yau 3-fold and a certain quiver with a superpotential. Under this derived equivalence we establish a wallcrossing formula for the generating function of the counting invariants of perverse coherent sheaves. As an application we provide some equations on Donaldson-Thomas, Pandeharipande-Thomas a...
متن کامل